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LETTER TO THE EDITOR 

Quantum deformations of SU(2) 

D B Fairliet 
Institute for Advanced Study, Princeton, NJ 08540, USA 

Received 23 November 1989 

Abstract. Explicit representations of two deformations of SU(2), one in the Cartan basis, 
and one in the Cartesian basis, are constructed. The Cartan deformation subsumes pre- 
viously known cases, while the Cartesian deformation appears to be new. In the latter 
case, explicit reversible mappings in terms of representations of SU(2) and a Casimir for 
the algebra are constructed. 

The first quantum deformations of the classical Lie algebras SU( N )  [ 1 1 ,  called quantised 
enveloping algebras by Drinfeld [ 2 ]  and Jimbo [ 3 ] ,  and referred to by the acronym 
QUE, treat the elements in the Cartan subalgebra on a different footing from the others. 
For SU(2), e.g., it is [ l ]  

Recently some further examples of Q U E  algebras have been constructed by Woronowicz 
[4 ]  and Witten [ 5 ]  which treat all generators on a similar footing. Consequently these 
algebras may thus be a better start to discovering a quantum deformation of the 
Virasoro algebra [ 6 ] .  In a subsequent article Curtright and Zachos [7] demonstrated 
explicit, almost always reversible, operator maps which are functionals of the SU( 2) 
generators which transform any given representation of SU( 2) into representations of 
the QUES of ( 1 )  [8], Drinfeld, Jimbo, Woronowicz and Witten. They also apply their 
method to an obvious two-parameter extension which subsumes both Woronowicz’s 
and Witten’s forms. This algebra is 

rWo W ,  - 1/ rW+ WO = W+ 

rW-Wo- l / rWoW-=  W- (2) 
l / s w + w - - s w ~ w + =  WO. 

In the case of Witten’s algebra, r = 6, while for Woronowicz r = s2. The purpose of 
the present letter is to give an  account of the representations of (2) from an elementary 
point of view, and to discuss a new quantum deformation of SU(2) in the Cartesian, 
rather than Cartan basis, i.e. 

q X Y - l / q Y X = Z  

qYZ - l / q Z Y  = x 
q z x - l / q X Z =  Y.  

(3)  

t On research leave from the University of Durham, UK. 
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This algebra is an egaliterian basis for the generators, and might be expected to possess 
attractive features in its representation theory. Unlike the classical case, where a change 
of basis is just a trivial linear transformation, there is no easy way to effect this in a 
QUE. A curious feature of the deformation maps for the algebra (3) is that they are 
most simply stated in terms of the Cartan, rather than Cartesian basis for SU(2). This 
observation is due to Zachos [9], and his construction of this map is presented below. 
There first follows a construction of the finite-dimensional reprentations of (2). They 
have been already given in terms of the representation matrices of SU(2) in [7], but 
are included here for the sake of completeness. Later we detail the representations of 
the Cartesian SU(2),, both as representation matrices and in terms of the representa- 
tions of Cartan SU(2) and exhibit a Casimir, thus establishing (3) as a potential QUE. 

The remaining property is the existence of a co-multiplication, which permits the 
reduction of tensor products of representations. Since a deformation map from SU(2) 
exists, it is in principle possible to deduce a formula for combining representations of 
(3) by transformation of the co-multiplication for SU(2). This does not apparently 
result in a neat formula for the co-multiplication. 

The way to find representations is to assume that WO is diagonal. 

fl 0 . . .  
0 j). 

. . . . . .  

(4) 

W + ,  on the other hand is assumed to have non-zero entries only in the super diagonal; 

0 a1 0 ... 
w+=[; p fff . ; ) .  

. . . . . . . . .  
We take for W- the Hermitian conjugate of this expression. Then the first of the 
equations (2) determines A through the recurrence relation: 

f; = r -2J+ l  + l / r  i =  1,2 , .  . .  n. 
The general solution is 

Notice that the simple linear combination is J; -J+l  given by 
J ;  -Jt1 ' f n r 2 ( ' - " ) ( l  - r 2 ) +  r ( 2 1 - 2 n + l )  

l / s a f - s a f - ,  =f; a0 = 0. (7) 

s2(n-l)fl + s 2 ( n - 2 )  f 2 + .  . .+fn =o. 

The unknown fn is determined by the third equation of the set (2). We have 

There are fewer unknowns a than functions fr, so there is a consistency check, namely 

(8) 
This equation provides a normalisation for the value of f n .  The solution of these 
equations for fn  is 
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Replacement of this expression in equation (7)  gives 
r2(i-l)(r2-S?)(S2n - 

The sub/super diagonal entries in W J  W+ are given by 

im iJs3(f1 + s-2f2)  i J s 5 ( ~  + s-'~ + s-4h) . . etc. 

Using (10)  we can perform the partial summations and obtain a closed expression for 
a, given by 

) I l l 2 .  (12) 
- 1)(s2'  - 1) - (2'' - l ) (r2 '  - 1) (' r2n r2n - S 2 n  a l = [ ( r 2 - 1 ) ( s 2 - 1 )  

rs 

These expressions are equivalent to those in [7]. To make a comparison, n should be 
replaced by 2 j  + 1 and i by j - j,, + 1 .  

The second case for which representations exist is SU(2), in the Cartesian basis, 
given by equations (3). The strategy in finding representations is to assume one matrix, 
2 say, is diagonal, with diagonal elements a , ,  a 2 , .  . . a,, and also to assume that 
a, =-a,-,+,, just as in the representation theory of SU(2). X is taken to be with 
non-zero elements X,, iff i = j i  1.  Y may be thought of as determined by the third of 
equations (3). It is clearly not possible to have all three matrices anti-Hermitian unless 
q is a root of unity. Then the equations to determine U, are 

( q 2 +  q-2)alal+l  = a?+ a?+, + 1 1 s  i c n - 1 .  (13) 

If n is even then the element anI2 is determined as qi/(q2+1);  if n is odd then 
u , , , , ~ ) ~ ~  = 0, u ( , , - ~ ) / ~  = i. The other elements are then obtained by the linear recursion; 

( q 2 +  q-2)a,+l = a, + 4 + 2  or better 

(14) 
2 

41 - 4 a,+, = q-2(al+l - q2a,+2). 

It is easy to solve this recursion relation; the solution which gives the appropriate 
central values is 

This solution is consistent with the quadratic relation (13).  The matrix X takes the form 

0 PI 0 . . .  0 

X =  [! 0 ; - 0  ; 1. 
. . .  P n  --2 P n - 1  

... P n - 1  

The squares of the components are determined by the linear equations 

~ 4 2 + 4 - 2 ~ ~ ~ l - , P f - l + ~ ~ + l P f ~ - ~ ~ P ~ - l + P 5 ~ ~ ,  =a, .  (17) 
Equations (17) are subject to the restrictions Po = Pn = 0. There are additional equations 
which come from the off-diagonal components of the 'quommutator'. They are 

(qZ+q-2)a l+ l -aI -a ,_ ,=0 .  
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These equations are precisely the same as (14) above! They are thus automatically 
satisfied. Using the relations (14) we can rewrite the equations (17)  in the simpler form 

(18) (a , -*  - a, )p i - ,  + (ai+2 - at)@? = a, i = l , n  

i.e. 
q 2 i - n - l  - 2 i + n + l  

2 i - n + l  + q - 2 i + n - l  )pf - ( q 2 i - n - 3  + q - 2 i + n + 3 ) p 2  = - 4  
( 4  1 - 1  

This set of equations possesses the general solution 
( q 2 ( i - n ) -  - 2 ( ~ n J ) ( ~ 2 i  - 4 - 2 ~ )  

1 s  i s n - 1 .  (20 )  4 
2 i - n + l  + q - 2 i + n - l ) ( q 2 r - n - l  + q - 2 i + n + l  

' ( 4  

Setting n = 2j + 1,  and taking the limit q + 1, we recapture the familiar results for 
representations of SU(2) .  Of course these representation matrices are only determined 
up to a gauge transformation U - ' X U ,  U-' YU, U-IZU. 

In order to establish the representations as functionals of SU(2)  generators as in 
[7] it is much better to express X ,  Y, Z in terms of SU(2) in a Cartan basis [9] than 
in the Cartesian one! Denoting the generators of SU(2) by j,, j ,  where these are 
normalised to give 

[jo,j+l = j +  [ j -  , jO1 = j -  [i+,j-I = j o  (21) 

and denoting by j an operator given by the Casimir j ( j  + 1 )  = 2j+j- +j,(j,+ l ) ,  the 
operators Z ,  X ,  Y may be re-expressed as follows. 

Equation (13 )  is translated as follows: 

X = i u ( j o ) j + + i j - u ( j o ) .  ( 2 3 )  
X is anti-Hermitian for real U, as it should be, and from the X ,  Z quommutator we 
get the presentation for 

Y = -u(j , )q2'0- ' j+ + j - q 1 - 2 J o u (  j,). (24) 

Note this is also anti-Hermitian! The 2, Y quommutator now works automatically, 
whilst the X ,  Y one dictates 

2(J0-J-1)  - q - 2 ( J o - J - ~ ) ) ( q ~ ( J o + J )  - q-2(Jo+J)  1 / 2  

( q 2  - q - 2 )  ( j +  j o ) ( j o  - j  - 1 ) ( q 2 J O +  q - 2 J o ) ( q 2 J o - 2 +  q - 2 J o + 2 )  
( 2 5 )  

- l  [ 2 ( q  )I . 4 j O )  = 

These expressions are equivalent to (14) and (20)  with the replacements n = 2j + 1 and 
the i, ith element ofj,, (when diagonalised) b y j  - i +  1 .  This is the same transformation 
of variables as in the previous example. 

This algebra possesses an appealing Casimir invariant which commutes with all 
the generators, and clearly reduces to the SU(2)  case when q = 1 and the quommutators 
reduce to commutators. It is [9] 

( 4 3 +  2 / q ) ( X Y Z  + YZX + Z X Y )  - ( f 3  + 2 q ) ( X Z Y  + Z Y X  + Y X Z ) .  (26)  

The final requirement for a Q U E  is that there should exist a co-multiplication within 
the algebra which guarantees that the tensor product of representations reduces as a 
direct sum of representations. That something of this kind should exist is guaranteed 



Letter to the Editor L187 

by the invertible relations (22), (23) and (24). With their aid, the co-multiplication in 
SU(2) given by 

A(jo)  = j o O 1  + lOj, A ( j , )  = j , O  1 + 1 Oj, (27) 

may be expressed in terms of X ,  Y, Z ;  and since A( jo ) ,  A ( j , )  obey the same SU(2) 
commutation relations as j,, j,, then so will A ( Z )  = ( q Z A ( - ’ o ’ -  q-2A””1)/(q2 - q - 2 )  etc 
obey the quommutation relations (3). This procedure gives a relatively simple construc- 
tion for A ( Z ) :  

A ( Z )  = Z O Z ’ i Z ’ O Z  

where 

It is easy to verify that in a diagonal basis, A ( 2 )  decomposes into the direct sum of 
representations. It seems that neither A ( X )  nor A( Y )  can be expressed in a similar 
simple fashion. 

I am indebted to C Zachos, P Fletcher and A Sudbery for numerous discussions and 
assistance in this work. 
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